График дзета-функции Римана (аналитического продолжения ряда Дирихле) на действительной оси. Слева от нуля масштаб шкалы значений функции увеличен в 100 раз для наглядности
Дзе́та-фу́нкция Ри́мана — функция ζ(s) комплексного переменного s = σ + it, при σ > 1, определяемая с помощью ряда Дирихле:
В частности, если будет доказана или опровергнута до сих пор ни доказанная, ни опровергнутая гипотеза Римана о положении всех нетривиальных нулей дзета-функции на прямой комплексной плоскости , то многие важные теоремы о простых числах, опирающиеся в доказательстве на гипотезу Римана, станут либо истинными, либо ложными.
Решето Эратосфена для поиска простых чисел используется в этом доказательстве
Идея доказательства использует лишь простую алгебру, доступную прилежному школьнику. Изначально этим способом Эйлер вывел формулу. Есть свойство решета Эратосфена, из которого мы можем извлечь пользу:
Вычитая второе из первого, мы удаляем все элементы с делителем 2:
Повторяем для следующего:
Опять вычитаем, получаем:
где удалены все элементы с делителями 2 и/или 3.
Как можно увидеть, правая сторона просеивается через решето. Бесконечно повторяя, получаем:
Поделим обе стороны на всё, кроме , получим:
что можно записать короче как бесконечное произведение по всем простым p:
Чтобы сделать доказательство строгим, необходимо потребовать только лишь, чтобы, когда , просеиваемая правая часть приближалась к 1, что немедленно следует из сходимости ряда Дирихле для .
Это равенство представляет собой одно из основных свойств дзета-функции.
Свойства
Дзета-функции Римана в комплексной плоскости
Если взять асимптотическое разложение при частичных сумм вида
,
справедливую для , она же останется верной и для всех , кроме тех, для которых (это тривиальные корни дзета-функции). Из этого можно получить следующие формулы для :
, при , кроме ;
, при , кроме или ;
, при , кроме , или и т. д.
Существуют явные формулы для значений дзета-функции в чётных целых точках:
Кроме того, получено значение , где — полигамма-функция;
Про значения дзета-функции в нечётных целых точках известно мало: предполагается, что они являются иррациональными и даже трансцендентными, но пока (2019 г.) доказана только лишь иррациональность числа ζ(3) (Роже Апери, 1978), а также то, что среди значений ζ(5), ζ(7), ζ(9), ζ(11) есть хотя бы ещё одно иррациональное[1].
где — гамма-функция Эйлера. Это уравнение называется функциональным уравнением Римана, хотя последний и не является ни его автором, ни тем, кто его первым строго доказал[3].
Для функции
,
введённой Риманом для исследования и называемой кси-функцией Римана, это уравнение принимает вид:
Бернхард Риман представил
Дзета-функцию в виде интеграла при :
Из которого в последствии было получено аналитическое продолжение на всю комплексную плоскость.
Как следует из функционального уравнения Римана, в полуплоскости функция имеет лишь простые нули в отрицательных чётных точках: . Эти нули называются «тривиальными» нулями дзета-функции. Далее, при вещественных . Следовательно, все «нетривиальные» нули дзета-функции являются комплексными числами. Кроме того, они обладают свойством симметрии относительно вещественной оси и относительно вертикали и лежат в полосе , которая называется критической полосой. Согласно гипотезе Римана, они все находятся на критической прямой.
Ниже приведены формулы для с участием интегралов, полученные с использованием дзета-функции Римана[5][6][7]:
Цепные дроби
Некоторые из представлений в виде цепных дробей были получены в связи с аналогичными представлениями для константы Апери, дающими возможность доказать её иррациональность.
Одним из наиболее коротких представлений является , получаем, что , где — полигамма-функция.
Обобщения
Существует довольно большое количество специальных функций, связанных с дзета-функцией Римана, которые объединяются общим названием дзета-функции и являются её обобщениями. Например:
которая совпадает с дзета-функцией Римана при z = 1 и q = 1 (так как суммирование ведётся от 0, а не от 1).
Квантовый аналог (q-аналог).
Аналогичные конструкции
В теории гауссовых интегралов по траекториям возникает задача регуляризации детерминантов. Одним из подходов к её решению является введение дзета-функции оператора[12]. Пусть — неотрицательно определённый самосопряжённый оператор, имеющий чисто дискретный спектр . Причём существует вещественное число, такое, что оператор имеет след. Тогда дзета-функция оператора определяется для произвольного комплексного числа, лежащего в полуплоскости , может быть задана сходящимся рядом
Если заданная таким образом функция допускает аналитическое продолжение на область, содержащую некоторую окрестность точки , то на её основе можно определить регуляризованный детерминант оператора в соответствии с формулой
История
Как функция вещественной переменной дзета-функция была введена в 1737 году Эйлером, который и указал её разложение в произведение.
Затем эта функция рассматривалась Дирихле и, особенно успешно, Чебышёвым при изучении закона распределения простых чисел.
Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы Римана (1859), где дзета-функция рассматривалась как функция комплексного переменного.
↑Connon D. F. (2007). Некоторые ряды и интегралы, включающие Дзета-функцию Римана, биномиальные коэффициенты и гармонические числа (часть I). arXiv:0710.4022 [math.HO].
↑Weisstein, Eric W.Double Integral. MathWorld. Дата обращения: 29 апреля 2018. Архивировано 29 апреля 2018 года.
Дербишир Дж. Простая одержимость. Бернхард Риман и величайшая нерешённая проблема в математике. — М.: Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2..
Тахтаджян Л. А. Квантовая механика для математиков / Перевод с английского к.ф.-м.н. С. А. Славнов. — Изд. 2-е. — М.—Ижевск: НИЦ «Регулярная и хаотическая динамика», Ижевский институт компьютерных исследований, 2011. — 496 с. — ISBN 978-5-93972-900-0.
Янке Е., Эмде Ф., Лёш Ф. Специальные функции: формулы, графики, таблицы / Пер. с 6-го переработанного немецкого издания под ред. Л. И. Седова. — Изд. 3-е, стереотип. — М.: Наука, 1977. — 344 с.