Третья краевая задача

Задача Робена, задача Ньютона, третья краевая задача, задача импедансного типа — разновидность краевой задачи для дифференциальных уравнений. Названа в честь французского математика Виктора Робена и британского физика Исаака Ньютона.

Постановка задачи

В самом общем виде задача ставится следующим образом: решить дифференциальное уравнение в частных производных, вида

в области

При граничных условиях следующего вида:

Такая задача называется третьей краевой задачей.

Физическая интерпретация

Поскольку третьи краевые задают связь между искомой функцией и её нормальной производной на границе области, то в зависимости от решаемой задачи используются разные способы задания и интерпретации третьих краевых:

  • Для уравнения теплопроводности задаются в виде  — теплообмен по закону Ньютона-Рихмана[1].
  • Для скалярных уравнений, получаемых из уравнений Максвелла, задаётся в похожем виде (если уравнение относительно напряжённости электрического поля) и означает связь между электрическим и магнитным полем на границе области.
  • Для векторных уравнений, получаемых из уравнений Максвелла записать третьи краевые, с учётом связи , можно следующим образом[2]:

Аналитическое решение

Аналитическое решение третьей краевой задачи можно найти с помощью теории потенциала.

Численное решение

В каждом численном методе решения дифференциальных уравнений свои особенности учёта третьих краевых, например:

  • В методе конечных разностей строится разностная схема вида , где  — разностный оператор и полученное уравнение добавляется в систему.
  • В методе конечных элементов третьи краевые являются естественными и учитываются на уровне вариационной постановки, получаются добавки в матрицу и в правую части[1]:
 — добавка в -й, -й элемент матрицы;
 — добавка в -й элемент правой части.

См. также

Примечания

  1. 1 2 Соловейчик Ю.Г., Рояк М.Э., Персова М.Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9.
  2. T. Huttunen, M. Malinen, P. Monk. Solving Maxwell’s Equations using Ultra Weak Variational Formulation (неопр.). — 2006. — С. 46.