Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических
явлений в пространственных областях, ограниченных сферическими
поверхностями и при решении физических задач, обладающих
сферической симметрией.
Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного полягеоида, магнитного поля планет и интенсивности реликтового излучения.
Определение
Вещественные сферические функции Ylm, l=0…4 (сверху вниз), m=0…4 (слева направо). Функции отрицательного порядка Yl-m повёрнуты вокруг оси Z на 90/m градусов относительно функций положительного порядка.
Сферические функции являются собственными функциями оператора Лапласа в сферической системе координат (обозначение ). Они образуют ортонормированную систему в пространстве функций на сфере в трёхмерном пространстве:
,
где * обозначает комплексное сопряжение, — символ Кронекера.
Присоединенные многочлены Лежандра с отрицательным здесь вводятся как
Решение уравнения Лапласа в сферических координатах есть так называемая шаровая функция, получаемая умножением сферической функции на решение радиального уравнения.
Вещественная форма
Вещественные сферические функции до шестого порядка
Для сферических функций форма зависимости от угла — комплексная экспонента. Используя формулу Эйлера, можно ввести вещественные сферические функции. Иногда их удобнее использовать в связи с тем, что они могут быть наглядно показаны на иллюстрациях, в отличие от комплексных. Однако значимое удобство комплексных функций (утрачиваемое при переходе к вещественным) состоит в независимости квадрата их модуля от угла .
Обратное преобразование:
Иногда вещественные сферические функции называют зональными, тессеральными и секториальными[1].
Функции с m > 0 зависят от угла как косинус, а с m < 0 — как синус.
Повороты
Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям
Рассмотрим поворот системы координат , на Углы Эйлера который преобрaзует единичный вектор в вектор .
При этом углы вектора в новой системе координат выражаются через углы в старой системе координат следующим образом
В новой системе координат сферическая функция с индексами и будет представима в виде линейной комбинации всех функций с тем же номером и различными . Коэффициентами в линейной комбинации являются комплексно- сопряженные D-матрицы Вигнера[2]
Сферические функции с номером образуют базис неприводимого представления размерности группы вращений SO(3).
Разложение плоской волны по сферическим функциям
Комплексная экспонента может быть представлена в виде разложения по сферическим функциям
Здесь — сферическая функция Бесселя
Разложение произведений сферических функций
Разложения Клебша-Гордана для произведений двух сферических функций выглядят следующим образом [3]:
Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 4-е. — М.: Наука, 1989. — 768 с. — («Теоретическая физика», том III). — ISBN 5-02-014421-5. — математические дополнения